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1. Introduction 

Let 𝜔 denotes the space of all real-valued sequences. Any vector subspace of 

𝜔 is called a sequence space. We write 𝑙∞, 𝑐 and 𝑐0 for the spaces of all bounded, 

convergent and null sequences, respectively. Also by 𝑏𝑠, 𝑐𝑠 and 𝑙1, we denote the 

spaces of all bounded, convergent and absolutely convergent series, respectively. 

Let 𝑋, 𝑌 be two sequence spaces and A = (𝑎𝑛𝑘) be an infinite matrix of real 

numbers 𝑎𝑛𝑘, where 𝑛, 𝑘 ∈ ℕ = {1, 2, ⋯ }. We say that 𝐴 defines a matrix mapping 

from 𝑋 into 𝑌, and we denote it by 𝐴: 𝑋 → 𝑌, if for every sequence 𝑥 = (𝑥𝑘) ∈ 𝑋 

the sequence 𝐴𝑥 = {( 𝐴𝑥)𝑛} exists and is in 𝑌, where (𝐴𝑥)𝑛 = ∑ 𝑎𝑛𝑘𝑥𝑘
∞
𝑛=1  for 

𝑛 =  1, 2, ⋯. By (𝑋, 𝑌), we denote the class of all infinite matrices 𝐴 such that 

𝐴: 𝑋 → 𝑌. 

For a sequence space 𝑋, the matrix domain 𝑋𝐴 of an infinite matrix 𝐴 is 

defined by 

𝑋𝐴 = {𝑥 = (𝑥𝑛) ∈ 𝜔 ∶  𝐴𝑥 ∈ 𝑋},                                               (1) 

which is a sequence space. The new sequence space 𝑋𝐴 generated by the limitation 

matrix 𝐴 from a sequence space 𝑋 can be the expansion or the contraction and or 

the overlap of the original space 𝑋. A matrix A = (𝑎𝑛𝑘) is called a triangle if 

𝑎𝑛𝑘 = 0 for 𝑘 > 𝑛 and 𝑎𝑛𝑛 ≠ 0 for all 𝑛 ∈ ℕ. If 𝐴 is triangle, then one can easily 

observe that the sequence spaces 𝑋𝐴 and 𝑋 are linearly isomorphic, i.e., 𝑋𝐴 ≅ 𝑋. 

In the past, several authors studied matrix transformations on sequence spaces 

that are the matrix domains of triangle matrices in classical spaces 𝑙𝑝, 𝑙∞, 𝑐 and 𝑐0. 

For instance, some matrix domains of the difference operator were studied in [4, 8, 

9, 13], of the Riesz matrices in [1, 3], of the Euler matrices in [2, 6, 12], of the 

Cesáro matrices in [5, 14, 15], and of the Nörlund matrices in [16, 17]. In these 

studies the matrix domains are obtained by triangle matrices, hence these spaces 
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are normed sequence spaces. For more details on the domain of triangle matrices in 

some sequence spaces, the reader may refer to Chapter 4 of [7]. The matrix 

domains given in this paper specify by a certain non-triangle matrix, so we should 

not expect that related spaces are normed sequence spaces. 

In this study, the normed sequence space 𝑋 is extended to semi-normed space 

𝑋(𝐸), where 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0}. We consider some topological properties of the spaces 

𝑙∞(𝐸), 𝑐(𝐸) and 𝑐0(𝐸), and derive some inclusion relations concerning with them. 

Furthermore, we determine the 𝛼- and 𝛽-duals for these spaces. Finally, we obtain 

the necessary and sufficient conditions on an infinite matrix belonging to the 

classes (𝑋(𝐸); 𝑙∞), (𝑋(𝐸), 𝑐) and (𝑋(𝐸), 𝑐0), where 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0}. 

The results are generalizations of some results of Malkowsky and Rakocevic 

[11]. In a similar way, the second Author has introduced the sequence spaces 

𝑙𝑝(𝐸), where 1 ≤ 𝑝 < ∞, [10]. 

 
2.    The sequence spaces 𝑿(𝑬) for 𝑿 ∈ {𝒍∞, 𝒄, 𝒄𝟎} 

 

       Let 𝐸 = (𝐸𝑛) be a partition of finite subsets of the positive integers such that 

𝑚𝑎𝑥𝐸𝑛 < 𝑚𝑖𝑛𝐸𝑛+1,                                                              (2) 

 𝑛 = 1, 2, ⋯ . We define the sequence spaces 𝑋(𝐸) for 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0} by 

𝑋(𝐸) = {  𝑥 = (𝑥𝑘)𝑘=1
∞ ∈ 𝜔 ∶   ( ∑ 𝑥𝑖

𝑖∈𝐸𝑘

)

𝑘=1

∞

∈ 𝑋  }. 

𝑋(𝐸) is a semi-normed space with the semi-norm ‖. ‖𝐸, which is defined by the 

following way: 

‖𝑥‖𝐸 = 𝑠𝑢𝑝
𝑘

|∑ 𝑥𝑖𝑖∈𝐸𝑘
|.                                                           (3) 

It should be noted that the function ‖. ‖𝐸 cannot be the norm, since if 𝑥 =
(1, −1, 0, 0, ⋯ ) and 𝐸𝑛 = {2𝑛 − 1, 2𝑛} for all 𝑛, then ‖𝑥‖𝐸 = 0 while 𝑥 ≠ 0. It 

is also significant that in the special case 𝐸𝑛 = {𝑛} for = 1, 2, ⋯ , we have 𝑋(𝐸) =
𝑋 and ‖𝑥‖𝐸 = ‖𝑥‖∞, where 𝑥 ∈ 𝑋 and ‖𝑥‖∞ = 𝑠𝑢𝑝𝑛|𝑥𝑛| is the usual norm of the 

spaces 𝑙∞, 𝑐 and 𝑐0. 

Suppose 𝐸 = (𝐸𝑛) is a sequence of finite subsets of the positive integers that 

satisfies the condition (2). If the infinite matrix A = (𝑎𝑛𝑘) is defined by 

𝑎𝑛𝑘 = {
1            𝑖𝑓 𝑘 ∈ 𝐸𝑛

  0            otherwise,
                                                     (4) 

with the notation of (1), we can redefine the spaces 𝑙∞(𝐸), 𝑐(𝐸) and 𝑐0(𝐸) as 

follows: 

𝑙∞(𝐸) = (𝑙∞)𝐴       𝑎𝑛𝑑        𝑐(𝐸) = (𝑐)𝐴        𝑎𝑛𝑑       𝑐0(𝐸) = (𝑐0)𝐴. 
Now, we may begin with the following theorem which is essential in the 

study. 

Theorem 1. The sequence spaces 𝑋(𝐸) for 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0} are complete semi-

normed vector spaces with respect to the semi-norm defined by (3). 
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𝐏𝐫𝐨𝐨f. This is a routine verification and so we omit the detail.             

It can easily be checked that the absolute property does not hold on the space 𝑋(𝐸), 

that is ‖𝑥‖𝐸 ≠ ‖|𝑥|‖𝐸 for at least one sequence in this space which says that 𝑋(𝐸) 

is the sequence space of non-absolute type, where |𝑥| = (|𝑥𝑘|).   

Throughout this article, we denote the cardinal number of the set 𝐸𝑘 by |𝐸𝑘|. 

Theorem 2. Let 𝑀 = { 𝑥 = (𝑥𝑛)𝑛=1
∞  ∶   ∑ 𝑥𝑗𝑗∈𝐸𝑛

= 0, ∀𝑛 }. The quotient spaces 

𝑙∞(𝐸) 𝑀⁄ , 𝑐(𝐸) 𝑀⁄  and 𝑐0(𝐸) 𝑀⁄  are linearly isomorphic to the spaces 𝑙∞, 𝑐 and 

𝑐0, respectively.  

𝐏𝐫𝐨𝐨𝐟. Let 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0}. Consider the map 𝑇 ∶  𝑋(𝐸) → 𝑋 defined by 

𝑇𝑥 = ( ∑ 𝑥𝑗

𝑗∈𝐸𝑛

)

𝑛=1

∞

 

for all 𝑥 ∈ 𝑋(𝐸). The linearity of 𝑇 is trivial. Let 𝑦 ∈ 𝑋 and 𝛼𝑛 = |𝐸𝑛| for all 𝑛. 

We define the sequence 𝑥 = (𝑥𝑘) by 𝑥𝑘 = 𝑦𝑛 𝛼𝑛⁄  for all 𝑘 ∈ 𝐸𝑛. It is clear that 

𝑥 ∈ 𝑋(𝐸) and 𝑇𝑥 =  𝑦. Thus the map 𝑇 is surjective. By applying the first 

isomorphism theorem we have 𝑋(𝐸) = 𝑀 / 𝑋, because 𝑘𝑒𝑟𝑇 = 𝑀.                                            

Note that the mapping defined in Theorem 2, 𝑇 is not injective. While the 

‖𝑇𝑥‖∞ = ‖𝑥‖𝐸 , 
for all 𝑥 ∈ 𝑋(𝐸).  

𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧 𝟏. Let 𝐸 = (𝐸𝑛) be a partition of finite subsets of the positive integers 

that satisfies the condition (2), and 𝑠 = (𝑠𝑛) be a strictly increasing sequence of 

the positive integers. The generated partition 𝐻 = (𝐻𝑛) is defined by 𝐸 and 𝑠, as 

follows 

𝐻𝑛 = ⋃ 𝐸𝑗

𝑠𝑛

𝑗=𝑠𝑛−1+1

, 

for 𝑛 = 1,2, ⋯. 

Here and in the sequel, we shall use the convention that any term with a zero 

subscript is equal to zero. Note that any arbitrary partition 𝐻 = (𝐻𝑛) that satisfies 

the condition (2) generate by the partition 𝐸 = (𝐸𝑛) and the sequence 𝑠 = (𝑠𝑛), 

where 𝐸𝑛 = {𝑛} and 𝑠𝑛 =  𝑚𝑎𝑥 𝐻𝑛 for all 𝑛. It is also important to know 𝑠𝑛 −
𝑠𝑛−1 = |𝐻𝑛|. 

In the following, the inclusion relation between the spaces 𝑋(𝐸) and 𝑋(𝐻) is  

examined. Obviously if 𝑠𝑛 − 𝑠𝑛−1 > 1 only for a finite number of 𝑛, then 

𝑋(𝐸) =  𝑋(𝐻). 
Especially if |𝐻𝑛| > 1 only for a finite number of 𝑛, then 𝑋 =  𝑋(𝐻), where 𝑋 ∈
{𝑙∞, 𝑐, 𝑐0}. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟑. Let 𝐸, 𝑠 and 𝐻 be as in Definition 1. Then, the following statements 

hold: 

(𝑖) If 

sup
𝑛

(𝑠𝑛 − 𝑠𝑛−1) < ∞, 
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we have 𝑙∞(𝐸) ⊂ 𝑙∞(𝐻), and 𝑐0(𝐸) ⊂ 𝑐0(𝐻). 

(𝑖𝑖) If there is a positive integer 𝜉 such that 𝑠𝑛 = 𝜉𝑛 for all 𝑛, then 𝑐(𝐸) ⊂ 𝑐(𝐻). 

(𝑖𝑖𝑖) Moreover if 𝑠𝑛 − 𝑠𝑛−1 > 1 for an infinite number of 𝑛, then the inclusion 

relations in parts (𝑖) and (𝑖𝑖) are strict. 

𝐏𝐫𝐨𝐨𝐟. (𝑖) Suppose that 𝜁 = 𝑠𝑢𝑝𝑛(𝑠𝑛 − 𝑠𝑛−1) and 𝑥 = (𝑥𝑘) ∈ 𝑙∞(𝐸), we have 

sup
𝑛

| ∑ 𝑥𝑗

𝑗∈𝐻𝑛

| = sup
𝑛

| ∑ ∑ 𝑥𝑗

𝑗∈𝐸𝑘

𝑠𝑛

𝑘=𝑠𝑛−1+1

| ≤ 𝜁sup
𝑘

| ∑ 𝑥𝑗

𝑗∈𝐸𝑘

| < ∞. 

 

This shows 𝑥 = (𝑥𝑘) ∈ 𝑙∞(𝐻), so 𝑙∞(𝐸)  ⊂  𝑙∞(𝐻). Since 

∑ 𝑥𝑗 = ∑ ∑ 𝑥𝑗

𝑗∈𝐸𝑘

𝑠𝑛

𝑘=𝑠𝑛−1+1𝑗∈𝐻𝑛

,                                                    (5) 

for all 𝑛, we can conclude 𝑐0(𝐸) ⊂ 𝑐0(𝐻). 

(𝑖𝑖) The inclusion 𝑐(𝐸) ⊂ 𝑐(𝐻) holds, since 𝑠𝑛 − 𝑠𝑛−1 = 𝜉 for all 𝑛. 

(𝑖𝑖𝑖) By assumption 𝑠𝑛 − 𝑠𝑛−1 > 1 for an infinite number of 𝑛, one can choose a 

subsequence (𝑛𝑗) in ℕ with 𝑠𝑛𝑗
− 𝑠𝑛𝑗−1 > 1 for 𝑗 = 1, 2, ⋯. We define the 

sequence 𝑥 = (𝑥𝑘) such that 

∑ 𝑥𝑗

𝑗∈𝐸𝑘

= {

𝑗                     𝑖𝑓 𝑘 = 𝑠𝑛𝑗−1 + 1

𝑗                      𝑖𝑓 𝑘 = 𝑠𝑛𝑗−1 + 2

0                               otherwise,

                                     (6) 

 

for 𝑘 = 1, 2, ⋯. It is obvious that ∑ 𝑥𝑖 = 0𝑖∈𝐻𝑘
, so 𝑥 ∈ 𝑋(𝐻) while the 𝑥 ∉ 𝑋(𝐸), 

for 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0}. Hence the inclusions in parts (𝑖) and (𝑖𝑖) are strict.                          

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 𝟏. Let 𝐻 = (𝐻𝑛) be a partition of finite subsets of the positive integers 

that satisfies the condition (2). Then, the following statements hold: 

(𝑖) If sup
𝑛

|𝐻𝑛| < ∞, we have 𝑙∞ ⊂ 𝑙∞(𝐻), and 𝑐0 ⊂ 𝑐0(𝐻). 

(𝑖𝑖) If there is a positive integer 𝜉 such that |𝐻𝑛| = 𝜉𝑛 for all 𝑛, then 𝑐 ⊂ 𝑐(𝐻). 

 (𝑖𝑖𝑖) Moreover if |𝐻𝑛| > 1 for an infinite number of 𝑛, then the inclusion relations 

in parts (𝑖) and (𝑖𝑖) are strict. 

𝐏𝐫𝐨𝐨𝐟. If 𝐸𝑛 = {𝑛} and 𝑠𝑛 =  𝑚𝑎𝑥 𝐻𝑛 for all 𝑛, then the partition 𝐻 = (𝐻𝑛) is 

generated by 𝐸 = (𝐸𝑛) and 𝑠 = (𝑠𝑛). The desired result follows from Theorem 3. 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 𝟐. Let 𝑀 and 𝑁 be two positive integers. If we put 𝐸𝑖 = {𝑀𝑖 − 𝑀 +
1, 𝑀𝑖 − 𝑀 + 2, ⋯ , 𝑀𝑖} and 𝐻𝑖 = {𝑀𝑁𝑖 − 𝑀𝑁 + 1, 𝑀𝑁𝑖 − 𝑀𝑁 + 2, ⋯ , 𝑀𝑁𝑖} for 

all 𝑖, then 𝑋(𝐸) ⊂ 𝑋(𝐻), where 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0}. Moreover if 𝑁 > 1, then these 

inclusions are strict. 

𝐏𝐫𝐨𝐨𝐟. If 𝑠𝑖 = 𝑁𝑖 for all 𝑖, then the partition 𝐻 = (𝐻𝑛) is generated by 𝐸 and 𝑠. 

The desired result follows from Theorem 3.                                                               
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3.     The 𝜶- and 𝜷-duals of the sequence space 𝑿(𝑬) 

 

        In this section, we compute the 𝛼- and 𝛽-duals for the sequence spaces 

𝑙∞(𝐸), 𝑐(𝐸) and 𝑐0(𝐸). For the sequence spaces 𝑋 and 𝑌, the set 𝑀(𝑋, 𝑌) defined 

by 

𝑀(𝑋, 𝑌) = {𝑎 = (𝑎𝑘) ∈ 𝜔 ∶   (𝑎𝑘𝑥𝑘)𝑘=1
∞ ∈ 𝑌  ∀𝑥 = (𝑥𝑘) ∈ 𝑋} 

is called the multiplier space of 𝑋 and 𝑌. With the above notation, the 𝛼- and 𝛽-

duals of a sequence space 𝑋, which are respectively denoted by 𝑋𝛼 and 𝑋𝛽, are 

defined by 

𝑋𝛼 =  𝑀(𝑋, 𝑙∞),                     𝑋𝛽 =  𝑀(𝑋, 𝑐𝑠).  
𝐋𝐞𝐦𝐦𝐚 𝟏 [𝟏𝟏]. Let 𝑋, 𝑌, 𝑍 ⊂ 𝜔. We have 

(𝑖) 𝑋 ⊂ 𝑍 implies 𝑀(𝑍, 𝑌 ) ⊂ 𝑀(𝑋, 𝑌). 

(ii) 𝑌 ⊂ 𝑍 implies 𝑀(𝑋, 𝑌) ⊂ 𝑀(𝑋, 𝑍). In particular 𝑋𝛼 ⊂ 𝑋𝛽. 

 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟒. Define the set 𝑑 as follows: 

𝑑 = { 𝑎 = (𝑎𝑘) ∈ 𝜔 ∶   ∑ (sup
𝑖∈𝐸𝑘

|𝑎𝑖|)

∞

𝑘=1

< ∞  }, 

then 

(𝑐0(𝐸))𝛽 = (𝑐(𝐸))𝛽 = (𝑙∞(𝐸))𝛽 = 𝑑. 
𝐏𝐫𝐨𝐨𝐟. Obviously (𝑙∞(𝐸))𝛽 ⊂ (𝑐(𝐸))𝛽 ⊂ (𝑐0(𝐸))𝛽 by Part (𝑖) of Lemma 1. So it 

is sufficient to verify the inclusions 𝑑 ⊂ (𝑙∞(𝐸))𝛽  and (𝑐0(𝐸))𝛽 ⊂ 𝑑.  

Let 𝑎 ∈ 𝑑 be given. Since 𝐸 = (𝐸𝑛) is a partition of the positive integers, we have 

|∑ 𝑎𝑘𝑥𝑘

∞

𝑘=1

| = |∑ ∑ 𝑎𝑖𝑥𝑖

𝑖∈𝐸𝑘

∞

𝑘=1

|                                                                       

 ≤ ∑ (sup
𝑖∈𝐸𝑘

|𝑎𝑖|) | ∑ 𝑥𝑖

𝑖∈𝐸𝑘

|

∞

𝑘=1

                                                       

 ≤ sup
𝑘

| ∑ 𝑥𝑖

𝑖∈𝐸𝑘

| ∑ (sup
𝑖∈𝐸𝑘

|𝑎𝑖|) < ∞,                                   (7)

∞

𝑘=1

 

for all 𝑥 ∈ 𝑙∞(𝐸). This shows 𝑎𝑥 ∈ 𝑐𝑠, thus 𝑎 ∈ (𝑙∞(𝐸))𝛽 and hence 𝑑 ⊂
(𝑙∞(𝐸))𝛽. 

Now, let 𝑎 ∈ (𝑙∞(𝐸))𝛽 be given. We consider the linear functional 𝑓𝑛 ∶ 𝑐0(𝐸) → ℝ 

defined by 

𝑓𝑛(𝑥) = ∑ ∑ 𝑎𝑖𝑥𝑖                     (𝑥 = (𝑥𝑘) ∈ 𝑐0(𝐸)),

𝑖∈𝐸𝑘

𝑛

𝑘=1

 

for 𝑛 = 1, 2, ⋯. Similar to (7), we obtain 
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|𝑓𝑛(𝑥)| ≤ sup
𝑘

| ∑ 𝑥𝑖

𝑖∈𝐸𝑘

| ∑ (sup
𝑖∈𝐸𝑘

|𝑎𝑖|)

𝑛

𝑘=1

, 

for every 𝑥 ∈ 𝑐0(𝐸). So the linear functional 𝑓𝑛 is bounded and ‖𝑓𝑛‖ ≤

∑ (sup
𝑖∈𝐸𝑘

|𝑎𝑖|)𝑛
𝑘=1 . We now prove reverse of the above inequality. Without loss of 

generality we assume there is an index 𝑖 such that 1 ≤ 𝑖 ≤ 𝑚𝑎𝑥𝐸𝑛 and 𝑎𝑖 ≠ 0, 

since the case 𝑎𝑖 = 0 for all 1 ≤ 𝑖 ≤ 𝑚𝑎𝑥𝐸𝑛 is trivial. We define the sequence 𝑥 =

(𝑥𝑖) by 𝑥𝑖 = sgn 𝑎𝑖, where 𝑖 ∈ 𝐸𝑘 is the first index of 𝐸𝑘 such that |𝑎𝑖| = sup
𝑗∈𝐸𝑘

|𝑎𝑗| 

for 1 ≤ 𝑘 ≤ 𝑛, and put the remaining elements zero. Obviously 𝑥 ∈ 𝑐0(𝐸), so  

‖𝑓𝑛‖ ≥
|𝑓𝑛(𝑥)|

‖𝑥‖𝐸
= ∑ (sup

𝑗∈𝐸𝑘

|𝑎𝑗|)

𝑛

𝑘=1

, 

and ‖𝑓𝑛‖ = ∑ (sup
𝑗∈𝐸𝑘

|𝑎𝑗|)𝑛
𝑘=1  for 𝑛 = 1, 2, ⋯. Since 𝑎 ∈ (𝑐0(𝐸))𝛽, the map 𝑓𝑎 ∶

𝑐0(𝐸) → ℝ defined by  

𝑓𝑎(𝑥) = ∑ ∑ 𝑎𝑖𝑥𝑖                  (𝑥 = (𝑥𝑘) ∈ 𝑐0(𝐸))

𝑖∈𝐸𝑘

∞

𝑘=1

 

is well-defined and linear, and also the sequence (𝑓𝑛) is pointwise convergent to 𝑓𝑎. 

By using the Banach-Steinhaus theorem, it can be shown that ‖𝑓𝑎‖ ≤

sup
𝑛

‖𝑓𝑛‖ < ∞, so ∑ (sup
𝑖∈𝐸𝑘

|𝑎𝑖|)∞
𝑘=1 < ∞ and 𝑎 ∈ 𝑑. This completes the proof.                                   

 

   It is clear that 𝑑 = 𝑙1 when sup
𝑘

|𝐸𝑘| < ∞, since  

∑ (sup
𝑖∈𝐸𝑘

|𝑎𝑖|)

∞

𝑘=1

≤ ∑|𝑎𝑘|,

∞

𝑘=1

 

and  

∑|𝑎𝑘| =

∞

𝑘=1

∑ ∑ |𝑎𝑖|

𝑖∈𝐸𝑘

= (sup
𝑘

|𝐸𝑘|)

∞

𝑘=1

∑ (sup
𝑖∈𝐸𝑘

|𝑎𝑖|)

∞

𝑘=1

. 

 

When sup
𝑘

|𝐸𝑘| = ∞, we have 𝑙1 ⊂ 𝑑 and the inclusion is strict. Since if 𝐸1 = {1, 2} 

and 𝐸𝑛 = {min 𝐸𝑛−1 + 𝑛(𝑛 + 1), ⋯ , max 𝐸𝑛 + 𝑛(𝑛 + 1) },          (n = 2, 3, ⋯ ), 
and if the sequence 𝑥 = (𝑥𝑘) is chosen such that 𝑥𝑘 = 1

𝑛(𝑛+1)
 for 𝑘 ∈ 𝐸𝑛. It is 

obvious that 𝑥 ∈ 𝑑 while 𝑥 ∉ 𝑙1. 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 𝟑. Let sup
𝑘

|𝐸𝑘| < ∞. Then, we have 

(𝑐0(𝐸))𝛽 = (𝑐(𝐸))𝛽 = (𝑙∞(𝐸))𝛽 = 𝑙1. 
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𝐏𝐫𝐨𝐨𝐟. Since 𝑑 = 𝑙1, by using Theorem 4, we obtain the desired result.                  

 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 𝟒 [11].  We have 𝑐0
𝛽 = 𝑐𝛽 = 𝑙∞

𝛽 = 𝑙1.  

𝐏𝐫𝐨𝐨𝐟. If 𝐸𝑘 = {𝑘} for all 𝑘, by applying Corollary 3, we obtain the desired result. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟓. We have (𝑋(𝐸))𝛼 ⊂ 𝑑, where 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0}. Moreover if |𝐸𝑛| > 1 

for an infinite number of 𝑛, then these inclusions are strict. 

𝐏𝐫𝐨𝐨𝐟. One can conclude from Theorem 4 with Part (𝑖𝑖) of Lemma 1 that 

(𝑋(𝐸))𝛼 ⊂ (𝑋(𝐸))
𝛽

= 𝑑, 
where 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0}. Moreover, if the sequence 𝑎 = (𝑎𝑖) is defined by 𝑎𝑖 =
1/2𝑛−1 whenever 𝑖 ∈ 𝐸𝑛, then we have  

∑ (sup
𝑖∈𝐸𝑛

|𝑎𝑖|)

∞

𝑛=1

= ∑
1

2𝑛−1

∞

𝑛=1

< ∞, 

which means that 𝑎 ∈ 𝑑. Because |𝐸𝑛| > 1 for an infinite number of 𝑛, we may 

choose an index subsequence (𝑛𝑗) of the positive integers with |𝐸𝑛𝑗
| > 1 for 𝑗 =

1, 2, ⋯. Let 𝛼𝑗 = min 𝐸𝑛𝑗
, we define the sequence 𝑥 = (𝑥𝑖) as follows: 

𝑥𝑖 = {

2𝑛𝑗−1                          𝑖𝑓 𝑖 = 𝛼𝑗

−2𝑛𝑗−1                     𝑖𝑓 𝑖 = 𝛼𝑗 + 1

0                             otherwise,

        

for 𝑖 = 1, 2, ⋯. Thus ∑ 𝑥𝑖𝑖∈𝐸𝑘
= 0 for all 𝑘, and 𝑥 ∈ 𝑋(𝐸). But  

∑|𝑎𝑘𝑥𝑘| =

∞

𝑘=1

∑ ∑ |𝑎𝑖𝑥𝑖|

𝑖∈𝐸𝑛𝑗

=

∞

𝑗=1

∑ 2 = ∞

∞

𝑗=1

, 

which shows that 𝑎 ∉ (𝑋(𝐸))𝛼 for 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0}. Therefore, these inclusions 

strictly hold. This step completes the proof.                                                                             

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 𝟓. Let sup
𝑘

|𝐸𝑘| < ∞. We have (𝑋(𝐸))𝛼 ⊂ 𝑙1, where 𝑋 ∈ {𝑙∞, 𝑐, 𝑐0}. 

Moreover if |𝐸𝑛| > 1 for an infinite number of 𝑛, then these inclusions are strict. 

𝐏𝐫𝐨𝐨𝐟. Since 𝑑 = 𝑙1, by using Theorem 5, we obtain the desired result.                  

 

4.     Matrix transformations on sequence spaces 𝑿(𝑬) 

 

       In the present section, some classes of infinite matrices related with new 

sequence spaces are characterized. Let A = (𝑎𝑛𝑘)  be an infinite matrix of real 

numbers and 𝑋 and 𝑌 be two sequence spaces. We write 𝐴𝑛 = (𝑎𝑛𝑘)k=1
∞  for the 

sequence in the 𝑛-th row of 𝐴. It is clear that 𝐴 ∈ (𝑋, 𝑌) if and only if 𝐴𝑛 ∈ 𝑋𝛽  for 

all 𝑛 and 𝐴𝑥 ∈ 𝑌 for all 𝑥 ∈ 𝑋.  

We start with the following lemma which is needed to prove our main results. 

𝐋𝐞𝐦𝐦𝐚 𝟐. If 𝑎 = (𝑎𝑘) ∈ 𝑑, then the linear functional 𝑓 ∶ 𝑐0(𝐸) → ℝ defined by 
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𝑓(𝑥) = ∑ 𝑎𝑘𝑥𝑘                 (𝑥 = (𝑥𝑘) ∈ 𝑐0(𝐸)),

∞

𝑘=1

 

is bounded and  

‖𝑓‖ = ∑ (sup
𝑖∈𝐸𝑛

|𝑎𝑖|) .

∞

𝑛=1

 

𝐏𝐫𝐨𝐨𝐟. Since 𝑓(𝑥) = ∑ ∑ 𝑎𝑖𝑥𝑖𝑖∈𝐸𝑘

∞
𝑘=1 , the proof is obtained by the proof of 

Theorem4.                                                                                                                                

 Let A = (𝑎𝑛𝑘) be an infinite matrix. We consider the conditions 

sup
𝑛

(∑ sup
𝑖∈𝐸𝑘

|𝑎𝑛𝑖|

∞

𝑘=1

) < ∞,                                                                         (8) 

lim
𝑛→∞

sup
𝑖∈𝐸𝑘

𝑎𝑛𝑖 = 0      (𝑘 = 1, 2, ⋯ ),                                                             (9) 

lim
𝑛→∞

(∑ sup
𝑖∈𝐸𝑘

𝑎𝑛𝑖

∞

𝑘=1

) = 0,                                                                             (10) 

lim
𝑛→∞

sup
𝑖∈𝐸𝑘

𝑎𝑛𝑖 = 𝑙𝑘    for some 𝑙𝑘 ∈ ℝ  (𝑘 = 1, 2, ⋯ ),                             (11) 

lim
𝑛→∞

(∑ sup
𝑖∈𝐸𝑘

𝑎𝑛𝑖

∞

𝑘=1

) = 𝑙   for some 𝑙 ∈ ℝ.                                                (12) 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟔. We have 

(𝑖) (𝑐0(𝐸), 𝑙∞) = (𝑐(𝐸), 𝑙∞) = (𝑙∞(𝐸), 𝑙∞) and 𝐴 ∈ (𝑙∞(𝐸), 𝑙∞) if and only if the 

condition (8) holds; 

(𝑖𝑖) 𝐴 ∈ (𝑐0(𝐸), 𝑐0) if and only if the conditions (8) and (9) hold; 

(𝑖𝑖𝑖) 𝐴 ∈ (𝑐(𝐸), 𝑐0) if and only if the conditions (8), (9) and (10) hold; 

(𝑖𝑣) 𝐴 ∈ (𝑐0(𝐸), 𝑐) if and only if the conditions (8) and (11) hold; 

(𝑣) 𝐴 ∈ (𝑐(𝐸), 𝑐) if and only if the conditions (8), (11) and (12) hold. 

𝐏𝐫𝐨𝐨𝐟. (𝑖) First we show that 𝐴 ∈ (𝑙∞(𝐸), 𝑙∞) if and only if the condition (8) 

holds. By the condition (8), we have 𝐴𝑛 ∈ 𝑑. So due to Theorem 4, 𝐴𝑛 ∈

(𝑙∞(𝐸))
𝛽

 for 𝑛 = 1, 2, ⋯. Let 𝑥 ∈ 𝑙∞(𝐸). Similar to the proof of Lemma 2, we 

deduce that  

|𝐴𝑛(𝑥)| ≤ (∑ |sup
𝑖∈𝐸𝑘

𝑎𝑛𝑖|

∞

𝑘=1

) ‖𝑥‖𝐸 , 

for all 𝑛. This implies that 𝐴𝑥 ∈ 𝑙∞ for each 𝑥 ∈ 𝑙∞(𝐸), so 𝐴 ∈ (𝑙∞(𝐸), 𝑙∞). 

        Conversely let 𝐴 ∈ (𝑙∞(𝐸), 𝑙∞). We define the sequence 𝑥 = (𝑥𝑖) by 𝑥𝑖 =

sgn 𝑎𝑛𝑖, where 𝑖 ∈ 𝐸𝑘 is the first index of 𝐸𝑘 such that |𝑎𝑛𝑖| = sup
𝑗∈𝐸𝑘

|𝑎𝑛𝑗|, and put 

the remaining elements zero. It is clear that 𝑥 ∈ 𝑙∞(𝐸), so 𝐴𝑥 ∈ 𝑙∞ and the 

condition (8) must hold.  
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       Now we show that 𝐴 ∈ (𝑐0(𝐸), 𝑙∞) if and only if the condition (8) holds. Like 

the previous part it's clear that 𝐴 ∈ (𝑐0(𝐸), 𝑙∞) if the condition (8) holds. 

Conversely, suppose that 𝐴 ∈ (𝑐0(𝐸), 𝑙∞). By our hypothesis that 𝐴𝑥 ∈ 𝑙∞ 

whenever 𝑥 ∈ 𝑐0(𝐸), it can be concluded that ∑ sup
𝑙∈𝐸𝑘

|𝑎𝑛𝑙| < ∞∞
𝑘=1  for all 𝑛; 

Otherwise if ∑ (sup
𝑙∈𝐸𝑘

|𝑎𝑛′𝑙|) = ∞∞
𝑘=1 , for some positive integer 𝑛′. There is a 

strictly increasing sequence (𝑚𝑗)𝑗=1
∞  of positive integers such that  

∑ (sup
𝑙∈𝐸𝑘

|𝑎𝑛′𝑙|) > 𝑗.

𝑚𝑗+1

𝑘=𝑚𝑗+1

 

       We define the sequence 𝑥 = (𝑥𝑖) by 𝑥𝑖 =
sgn 𝑎

𝑛′𝑖
𝑗

, where 𝑖 ∈ 𝐸𝑘 is the first 

index of 𝐸𝑘 such that |𝑎𝑛′𝑖| = sup
𝑙∈𝐸𝑘

|𝑎𝑛′𝑙|, 𝑚𝑗 < 𝑘 ≤ 𝑚𝑗+1, and put the remaining 

elements zero, especially 𝑥𝑘 = 0 for 0 ≤ 𝑘 ≤ 𝑚1. It is obvious that 𝑥 ∈ 𝑐0(𝐸), and 

∑ 𝑎𝑛′𝑘𝑥𝑘 =

∞

𝑘=1

∑ ∑
sup

𝑙∈𝐸𝑘

|𝑎
𝑛′𝑙

|

𝑗

𝑚𝑗+1

𝑘=𝑚𝑗+1

> ∑ 1.

∞

𝑗=1

∞

𝑗=1

 

 

      This means that ∑ 𝑎𝑛′𝑘𝑥𝑘
∞
𝑘=1  is divergent, which contradicts our assumption. 

Hence ∑ (sup
𝑙∈𝐸𝑘

|𝑎𝑛′𝑙|) < ∞∞
𝑘=1  and 𝐴𝑛 ∈ 𝑑, for all 𝑛. Due to Lemma 2, the linear 

functional 𝑓𝑛: 𝑐0(𝐸) →  ℝ defined by  

𝑓𝑛(𝑥) = ∑ 𝑎𝑛𝑘𝑥𝑘                     (𝑥 = (𝑥𝑘) ∈ 𝑐0(𝐸)),

∞

𝑘=1

 

is bounded and ‖𝑓𝑛‖ = ∑ sup
𝑙∈𝐸𝑘

|𝑎𝑛′𝑙|∞
𝑘=1 , for all 𝑛. By applying the Banach-

Steinhaus theorem it follows that sup
𝑛

‖𝑓𝑛‖ < ∞, so sup
𝑛

∑ |𝑎𝑛𝑘| < ∞∞
𝑘=1  and the 

condition (8) must hold. The proof is completed according to the mentioned topics 

and (𝑙∞(𝐸), 𝑙∞) ⊆ (𝑐(𝐸), 𝑙∞) ⊆ (𝑐0(𝐸), 𝑙∞).  

(𝑖𝑖) Suppose that 𝐴 ∈ (𝑐0(𝐸), 𝑐0). We define the sequence 𝑒𝑘 = (𝑒𝑖
𝑘  )𝑖=1

∞  by 𝑒𝑖
𝑘 =

1, where 𝑖 ∈ 𝐸𝑘 is the first index of 𝐸𝑘 such that |𝑎𝑛𝑖| = sup
𝑙∈𝐸𝑘

|𝑎𝑛𝑙| for 𝑘 = 1, 2, ⋯, 

and put the remaining elements zero. Obviously 𝑒𝑘 ∈ 𝑐0(𝐸) and 𝐴𝑒𝑘 ∈ 𝑐0, this 

proves the necessity of the condition (9). The proof of the necessity of the 

condition (8) is similar to previous part. Conversely, suppose that the conditions 

(8) and (9) hold. For every 𝑥 ∈ 𝑐0(𝐸) 
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|𝐴𝑛(𝑥)| = |∑ ∑ 𝑎𝑛𝑖𝑥𝑖

𝑖∈𝐸𝑘

∞

𝑘=1

|                                                                                          

 ≤ ∑ sup
𝑖∈𝐸𝑘

|𝑎𝑛𝑖| | ∑ 𝑥𝑖

𝑖∈𝐸𝑘

|

𝑚

𝑘=1

+ ∑ sup
𝑖∈𝐸𝑘

|𝑎𝑛𝑖| | ∑ 𝑥𝑖

𝑖∈𝐸𝑘

|

∞

𝑘=𝑚+1

                                

 ≤ ‖𝑥‖𝐸 ∑ sup
𝑖∈𝐸𝑘

|𝑎𝑛𝑖|

𝑚

𝑘=1

+ sup
𝑘≥𝑚+1

| ∑ 𝑥𝑖

𝑖∈𝐸𝑘

| ∑ sup
𝑖∈𝐸𝑘

|𝑎𝑛𝑖|

∞

𝑘=𝑚+1

.                         

 

        Now take 𝑚 so large that sup
𝑘≥𝑚+1

|∑ 𝑥𝑖𝑖∈𝐸𝑘
| < 𝜖 and then take 𝑛 so large that 

∑ sup
𝑖∈𝐸𝑘

|𝑎𝑛𝑖|𝑚
𝑘=1 < 𝜖 (possible since lim

𝑛→∞
sup
𝑖∈𝐸𝑘

|𝑎𝑛𝑖| = 0). We have 𝐴𝑥 ∈ 𝑐0.  

(𝑖𝑖𝑖) Suppose that 𝐴 ∈ (𝑐(𝐸), 𝑐0). Since the sequences 𝑒𝑘 ∈ 𝑐(𝐸), we deduce that 

𝐴𝑒𝑘 ∈ 𝑐0 for 𝑘 = 1, 2, ⋯. This implies that (sup
𝑖∈𝐸𝑘

|𝑎𝑛𝑖| )𝑘=1
∞ ∈ 𝑐0, so the condition 

(9) holds. Also if the sequence 𝑒 = (𝑒𝑖) is defined by 𝑒𝑖 = 1 when 𝑎𝑛𝑖 = sup
𝑙∈𝐸𝑘

|𝑎𝑛𝑙| 

for some 𝑘, and we put the remaining elements zero. Then 𝑒 ∈ 𝑐(𝐸) indicate that 

𝐴𝑒 =  (∑ sup
𝑙∈𝐸𝑘

|𝑎𝑛𝑙|∞
𝑘=1 )

𝑛=1

∞

∈ 𝑐0, so the condition (10) is satisfied. The proof of 

the necessity of the condition (8) is similar to the part (𝑖). 

Conversely, suppose that the conditions (8), (9) and (10) hold. For every 

𝑥 ∈ 𝑐(𝐸) there is a finite number as 𝑙 such that lim
𝑘→∞

∑ 𝑥𝑖𝑖∈𝐸𝑘
= 0. If the sequence 

𝑦 = (𝑦𝑖) defined by 𝑦𝑖 = 𝑙

|𝐸𝑘|
 for 𝑖 ∈ 𝐸𝑘, then  

𝐴𝑛(𝑥) = ∑ 𝑎𝑛𝑘𝑥𝑘 =

∞

𝑘=1

∑ 𝑎𝑛𝑘(𝑥𝑘 − 𝑦𝑘) +

∞

𝑘=1

∑ 𝑎𝑛𝑘𝑦𝑘 = 𝑠𝑛 + 𝑡𝑛,

∞

𝑘=1

 

where 𝑠𝑛 = ∑ 𝑎𝑛𝑘(𝑥𝑘 − 𝑦𝑘)∞
𝑘=1  and 𝑡𝑛 = ∑ 𝑎𝑛𝑘𝑦𝑘

∞
𝑘=1 . By applying part (𝑖𝑖), we 

deduce that 𝐴 ∈ (𝑐0(𝐸), 𝑐0). So lim
𝑛→∞

𝑠𝑛 = 0, since(𝑥𝑘 − 𝑦𝑘) ∈ 𝑐0(𝐸). On the other 

hand, lim
𝑛→∞

𝑡𝑛 = 0 by the condition (10), since  

𝑡𝑛 ≤ ∑ ∑ |𝑎𝑛𝑖𝑦𝑖| ≤ 𝑙 ∑ sup
𝑖∈𝐸𝑘

|𝑎𝑛𝑖|

∞

𝑘=1𝑖∈𝐸𝑘

∞

𝑘=1

. 

Therefore 𝐴 ∈ (𝑐(𝐸), 𝑐0). 

(𝑖𝑣) Let 𝐴 ∈ (𝑐0(𝐸), 𝑐). Using the sequences 𝑒𝑘, the necessity of the condition 

(11) is immediate. The proof of the necessity of the condition (8) is similar to the 

part (𝑖). Conversely, suppose that the conditions (8) and (11) hold. If 𝐵 = (𝑏𝑛𝑖) 

be a matrix such that 𝑏𝑛𝑖 = 𝑎𝑛𝑖 − 𝑙𝑘 where 𝑖 ∈ 𝐸𝑘, for every 𝑛, 𝑘 ∈ ℕ, we first 

prove that 𝐵 ∈ (𝑐0(𝐸), 𝑐0). Let 𝑀 > 0 and 𝜖 > 0 be given. Due to (11), there is a 
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positive number 𝑁𝑘 such that |sup
𝑖∈𝐸𝑘

𝑎𝑛𝑖 − 𝑙𝑘| ≤ 𝜖

𝑀
, for all 𝑛 ≥ 𝑁𝑘. Take 𝑁 =

max
1≤𝑘≤𝑀

𝑁𝑘, we have  

∑|𝑙𝑘| ≤ ∑ |𝑙𝑘 − sup
𝑖∈𝐸𝑘

𝑎𝑛𝑖| + ∑ sup
𝑖∈𝐸𝑘

|𝑎𝑛𝑖| ≤ 𝜖 + ∑ sup
𝑖∈𝐸𝑘

|𝑎𝑛𝑖|

𝑚

𝑘=1

𝑚

𝑘=1

,

𝑚

𝑘=1

𝑚

𝑘=1

 

for every 𝑛 ≥ 𝑁. If 𝑀 → ∞, due to the condition (8), it can be concluded that 

(𝑙𝑘  )𝑘=1
∞ ∈ 𝑙1. Since sup

𝑖∈𝐸𝑘

𝑏𝑛𝑖 = sup
𝑖∈𝐸𝑘

𝑎𝑛𝑖 − 𝑙𝑘, we have sup
𝑖∈𝐸𝑘

𝑏𝑛𝑖 → 0 as 𝑛 → ∞ and 

also sup
𝑛

∑ sup
𝑖∈𝐸𝑘

|𝑏𝑛𝑖|∞
𝑘=1 < ∞. Hence 𝐵 ∈ (𝑐0(𝐸), 𝑐0), by part (𝑖𝑖). This implies that 

𝐵𝑥 ∈ 𝑐0 for all 𝑥 ∈ 𝑐0(𝐸), so  

lim
𝑛→∞

∑ 𝑎𝑛𝑘𝑥𝑘 =

∞

𝑘=1

∑ 𝑙𝑘 ( ∑ 𝑥𝑖

𝑖∈𝐸𝑘

)

∞

𝑘=1

.                                             (13) 

Since (∑ 𝑥𝑖𝑖∈𝐸𝑘
 )𝑘=1

∞ ∈ 𝑐0 when 𝑥 ∈ 𝑐0(𝐸) and (𝑙𝑘  )𝑘=1
∞ ∈ 𝑐0

𝛽
, by Corollary 4, we 

have ∑ 𝑙𝑘(∑ 𝑥𝑖𝑖∈𝐸𝑘
)∞

𝑘=1 < ∞ for all 𝑥 ∈ 𝑐0(𝐸). This result and the relation (13) 

show that 𝐵 ∈ (𝑐0(𝐸), 𝑐0). The proof of the part (𝑣) is similar to the part (𝑖𝑖𝑖).      

It should be noted when 𝐸𝑗 = {𝑗} for 𝑗 = 1, 2, ⋯, the conditions (8), (9), 

(10), (11) and (12) can be rewritten as follows, respectively. 

sup
𝑛

(∑|𝑎𝑛𝑘|

∞

𝑘=1

) < ∞,                                                                            (14) 

lim
𝑛→∞

𝑎𝑛𝑘 = 0      (𝑘 = 1, 2, ⋯ ),                                                             (15) 

lim
𝑛→∞

(∑ 𝑎𝑛𝑘

∞

𝑘=1

) = 0,                                                                                (16) 

lim
𝑛→∞

𝑎𝑛𝑘 = 𝑙𝑘    for some 𝑙𝑘 ∈ ℝ  (𝑘 = 1, 2, ⋯ ),                               (17) 

lim
𝑛→∞

(∑ 𝑎𝑛𝑘

∞

𝑘=1

) = 𝑙   for some 𝑙 ∈ ℝ.                                                  (18) 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 𝟔 [𝟏𝟏]. We have 

(𝑖) (𝑐0, 𝑙∞) = (𝑐, 𝑙∞) = (𝑙∞, 𝑙∞) and 𝐴 ∈ (𝑙∞, 𝑙∞) if and only if the condition (14) 

holds; 

(𝑖𝑖) 𝐴 ∈ (𝑐0, 𝑐0) if and only if the conditions (14) and (15) hold ; 

(𝑖𝑖𝑖) 𝐴 ∈ (𝑐, 𝑐0) if and only if the conditions (14), (15) and (16) hold; 

(𝑖𝑣) 𝐴 ∈ (𝑐0, 𝑐) if and only if the conditions (14) and (17) hold; 

(𝑣) 𝐴 ∈ (𝑐, 𝑐) if and only if the conditions (14), (17) and (18) hold. 

 
𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞𝐬 
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Bəzi yeni qeyri-mütləq tip yarım normallaşmış ardıcıllıq fəzaları və  

matrix çevrilmələri 

 

S. Erfanmanesh, D. Foroutannia 

 

XÜLASƏ 

 
Bu işin  məqsədi ardıcıllıq fəzalarını daxil etməkdir. Biz bu fəzaların bəzi topoloji 

xassələri araşdırırıq və həmçinin onların arasında daxilolma münasibətləri qururuq. Bundan 

əlavə, biz  bu fəzaların α- və β-duallarını hesablayır və sonsuz matrislərin siniflərini  

xarakterizə edirik. 

Açar sözlər: yarımnormallaşmış ardıcıllıq fəzaları, matris oblastı, α- və β-dualları, 

matris çevirmələr.  

 

 

Некоторые новые неабсольютного типа полу-нормированные 

пространства последовательностей и матричные преобразования 

  

С. Ерфанманеш, Д. Фороутанниа 

 

РЕЗЮМЕ 

 
  Цель данного исследования заключается в введении пространств 

последовательностей. Мы исследуем некоторые топологические свойства этих 

пространств, а также установить некоторые отношений включений между ними. 

Кроме того, мы вычисляем α- и бета-двойственные этих пространств и 

охарактеризуем классы бесконечных матриц. 

  Ключевые слова: полу-нормированные пространства последовательностей, 

матричные домены, α- и бета-сопряженные, матричные преобразования. 

 

 

 
 


