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1. Introduction

Let w denotes the space of all real-valued sequences. Any vector subspace of
w is called a sequence space. We write [, ¢ and ¢, for the spaces of all bounded,
convergent and null sequences, respectively. Also by bs, cs and [;, we denote the
spaces of all bounded, convergent and absolutely convergent series, respectively.

Let X,Y be two sequence spaces and A = (a,,) be an infinite matrix of real
numbers a,,;, where n,k € N = {1,2,--- }. We say that A defines a matrix mapping
from X into Y, and we denote it by A: X — Y, if for every sequence x = (x;) € X
the sequence Ax = {( Ax),} exists and is in Y, where (Ax), = Ymeq AniXy for
n = 1,2,---.By (X,Y), we denote the class of all infinite matrices A such that
A:X-Y.

For a sequence space X, the matrix domain X, of an infinite matrix A is
defined by

Xy={x=(,) Ew: Ax € X}, (1)
which is a sequence space. The new sequence space X, generated by the limitation
matrix A from a sequence space X can be the expansion or the contraction and or
the overlap of the original space X. A matrix A = (a,;) is called a triangle if
an, =0 for k >nand a,, # 0 for all n € N. If 4 is triangle, then one can easily
observe that the sequence spaces X, and X are linearly isomorphic, i.e., X, = X.

In the past, several authors studied matrix transformations on sequence spaces
that are the matrix domains of triangle matrices in classical spaces [, lo,, ¢ and co.
For instance, some matrix domains of the difference operator were studied in [4, 8,
9, 13], of the Riesz matrices in [1, 3], of the Euler matrices in [2, 6, 12], of the
Cesaro matrices in [5, 14, 15], and of the Norlund matrices in [16, 17]. In these
studies the matrix domains are obtained by triangle matrices, hence these spaces
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are normed sequence spaces. For more details on the domain of triangle matrices in
some sequence spaces, the reader may refer to Chapter 4 of [7]. The matrix
domains given in this paper specify by a certain non-triangle matrix, so we should
not expect that related spaces are normed sequence spaces.
In this study, the normed sequence space X is extended to semi-normed space
X(E), where X € {lo, ¢, co}. We consider some topological properties of the spaces
lo(E), c(E) and ¢y (E), and derive some inclusion relations concerning with them.
Furthermore, we determine the a— and S-duals for these spaces. Finally, we obtain
the necessary and sufficient conditions on an infinite matrix belonging to the
classes (X(E); lw), (X(E),c) and (X(E), cg), where X € {l, ¢, co}-

The results are generalizations of some results of Malkowsky and Rakocevic
[11]. In a similar way, the second Author has introduced the sequence spaces
l,(E), where 1 < p < oo, [10].

2. The sequence spaces X(E) for X € {l,,c, co}

Let E = (E,) be a partition of finite subsets of the positive integers such that
maxE, < minE, .4, 2
n =1,2,---. We define the sequence spaces X (E) for X € {l.,,c,cy} by

X(E)=4 x=0)p1 Ew : le- EX

i€EE) k=1
X (E) is a semi-normed space with the semi-norm ||. ||z, which is defined by the
following way:

llxllg = Sl;plz:iEEk xil- (3)

It should be noted that the function ||. ||z cannot be the norm, since if x =
(1,-1,0,0,--- ) and E, = {2n — 1, 2n} for all n, then ||x||z = 0 while x = 0. It
is also significant that in the special case E,, = {n} for = 1,2,---, we have X(E) =
X and [|x]|g = [|x]lc, Where x € X and ||x||, = sup,|x,| is the usual norm of the
spaces l, ¢ and cy.

Suppose E = (E,) is a sequence of finite subsets of the positive integers that
satisfies the condition (2). If the infinite matrix A = (ay,;) is defined by

1 if k€E,

Anke = { 0 otherwise, )
with the notation of (1), we can redefine the spaces [, (F), c(E) and ¢y (E) as
follows:

lo(E) =(x)a and c(E)=(c)a and co(E) = (co)a-

Now, we may begin with the following theorem which is essential in the
study.

Theorem 1. The sequence spaces X(E) for X € {l,,,c,co} are complete semi-
normed vector spaces with respect to the semi-norm defined by (3).
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Proof. This is a routine verification and so we omit the detail.

It can easily be checked that the absolute property does not hold on the space X (E),
that is [|x||g # |||x]||g for at least one sequence in this space which says that X (E)
is the sequence space of non-absolute type, where |x| = (|x;|).

Throughout this article, we denote the cardinal number of the set E}, by |Ej|.
Theorem 2. Let M ={x = (x)p=1 * Xjeg, ¥ =0, Vn}. The quotient spaces
low(E)/M, c(E)/M and cy(E)/M are linearly isomorphic to the spaces [, ¢ and
Co, respectively.

Proof. Let X € {l,,c,cy}. Considerthemap T : X(E) — X defined by

Tx = Z Xj
JE€En n=1
for all x € X(E). The linearity of T is trivial. Let y € X and «a,, = |E,,| for all n.
We define the sequence x = (xi) by x, = y,/a, for all k € En. It is clear that
x € X(E) and Tx = y. Thus the map T is surjective. By applying the first
isomorphism theorem we have X(E) = M / X, because kerT = M.
Note that the mapping defined in Theorem 2, T is not injective. While the
ITxlleo = llxll£,
forall x € X(E).
Definition 1. Let E = (E,,) be a partition of finite subsets of the positive integers
that satisfies the condition (2), and s = (s,,) be a strictly increasing sequence of

the positive integers. The generated partition H = (H,,) is defined by E and s, as

follows
Sn
H, = U E;,

j=sn-1+1
forn=1,2,---.

Here and in the sequel, we shall use the convention that any term with a zero
subscript is equal to zero. Note that any arbitrary partition H = (H,,) that satisfies
the condition (2) generate by the partition E = (E,) and the sequence s = (s,),
where E, = {n} and s,, = max H, for all n. It is also important to know s,, —
Sp—1 = |Hnl.

In the following, the inclusion relation between the spaces X(E) and X(H) is
examined. Obviously if s,, — s,_1 > 1 only for a finite number of n, then

X(E) = X(H).
Especially if |H,,| > 1 only for a finite number of n, then X = X(H), where X €
{le, c,co}
Theorem 3. Let E, s and H be as in Definition 1. Then, the following statements
hold:
@ If

sup(sn - Sn—l) < o,
n
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we have I, (E) € l,(H), and ¢y (E) < co(H).

(ii) If there is a positive integer ¢ such that s,, = &n for all n, then c(E) < c(H).
(iit) Moreover if s, — s,,_; > 1 for an infinite number of n, then the inclusion
relations in parts (i) and (ii) are strict.

Proof. (i) Suppose that { = sup, (s, — sp,_1) and x = (xx) € L, (E), we have

Sn
sup ij = sup Z ij < {sup ij < 0o,
n n k

JjEHy k=sp_1+1 jEEL JEEg

This shows x = (x3) € ln(H), S0 ln(E) < l(H). Since
Sn

Y= > > ®)

JjEH, k=sp_1+1 jEE)

for all n, we can conclude ¢y (E) < co(H).

(i) The inclusion c(E) < c(H) holds, since s,, — s,,_; = & for all n.

(iii) By assumption s,, — s,,_; > 1 for an infinite number of n, one can choose a
subsequence (n;) in N with Sn; = Sp;-1 > 1 forj =1,2,---. We define the
sequence x = (x;) such that

j if k= Spj-1 11
ijz j if k=551 +2 (6)
JEEK 0 otherwise,

for k = 1,2, Itis obvious that };cp, x; = 0, s0 x € X(H) while the x & X(E),
for X € {l,, c, cp}. Hence the inclusions in parts (i) and (ii) are strict.

Corollary 1. Let H = (H,) be a partition of finite subsets of the positive integers
that satisfies the condition (2). Then, the following statements hold:

(i) If sup|H,,| < oo, we have [, € l,(H), and ¢y € co(H).

n
(ii) If there is a positive integer & such that |H, | = én for all n, then ¢ < c(H).
(iit) Moreover if |H,| > 1 for an infinite number of n, then the inclusion relations
in parts (i) and (ii) are strict.
Proof. If E,, = {n} and s,, = max H,, for all n, then the partition H = (H,,) is
generated by E = (E,,) and s = (s,). The desired result follows from Theorem 3.
Corollary 2. Let M and N be two positive integers. If we put E; = {Mi — M +
1,Mi—M +2,---,Mi} and H; = {MNi — MN + 1, MNi — MN + 2,---, MNi} for
all i, then X(E) c X(H), where X € {l,c,cy}. Moreover if N > 1, then these
inclusions are strict.
Proof. If s; = Ni for all i, then the partition H = (H,,) is generated by E and s.
The desired result follows from Theorem 3.
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3. The a- and B-duals of the sequence space X(E)

In this section, we compute the a- and B-duals for the sequence spaces
l.(E), c(E) and co(E). For the sequence spaces X and Y, the set M(X,Y) defined
by

MX,Y) ={a=(ar) Ew: (arxp)i=1 €Y Vx = (x) € X}
is called the multiplier space of X and Y. With the above notation, the a- and f-
duals of a sequence space X, which are respectively denoted by X and X%, are
defined by

X% = M(X,ly), XB = M(X,cs).

Lemma 1 [11]. Let X,Y,Z c w. We have
()X cZimpliessM(Z,Y)c M(X,Y).
(i) Y < Z implies M(X,Y) € M(X,Z). In particular X* c X#,

Theorem 4. Define the set d as follows:

d:{az(ak)Ew:

[oe]

> <sup|ai|> <o }
iEEk

k=1
then

(co(E))F = (c(E))F = (ln(E))F = d.
Proof. Obviously (I, (E))? < (c(E))? < (co(E))? by Part (i) of Lemma 1. So it
is sufficient to verify the inclusions d © (I, (E))? and (co(E))? < d.
Let a € d be given. Since E = (E,,) is a partition of the positive integers, we have

0 0

k=1 k=11i€Ey
o0
< z<$up|ai|> in
=1 \EEk {€Ey,
o0
< sup z X; Z(suplai|> < oo, (7
k EE, |k=1 \€Ek

for all x € I, (E). This shows ax € cs, thus a € (I, (E))# and hence d

(e (E)P.

Now, let a € (I,,(E))? be given. We consider the linear functional £, : co(E) —» R
defined by

R@ =) ax (x = () € o(E)),

k=1i€Ey
forn =1,2,---. Similar to (7), we obtain
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n

Gl < sup| ) il ) <fé};2'“f'>'

i€E) k=1
for every x € ¢y(E). So the linear functional f,, is bounded and |[|f,|l <

Yh=1 <sup|ai|>. We now prove reverse of the above inequality. Without loss of
IEEg

generality we assume there is an index i such that 1 <i < maxE, and a; # 0,

since the case a; = 0 for all 1 < i < maxE, is trivial. We define the sequence x =

(x;) by x; = sgn a;, where i € Ej is the first index of Ej, such that |a;| = sup|a;]|
JEEK

for 1 < k < n, and put the remaining elements zero. Obviously x € cy(E), so
n
|fn (01
Ifull = 2 Z sup|a;| )

Ixlle — &4 \jes,

and ||f, ]l = 32_, (sup|aj|> forn =1,2,---. Since a € (co(E))?, the map f, :
JEEK

co(E) — R defined by

fal@) = 2 > e (x = (xi) € o(E))

=1i€Ey
is well-defined and Imear and also the sequence (f;,) is pointwise convergent to f,.
By using the Banach-Steinhaus theorem, it can be shown that ||f,ll <

sup||full < 0,50 Xr (suplai|> < oo and a € d. This completes the proof.
n IEE)

It is clear that d = [; when sup|E}| < oo, since
k

> (suplal|> < lal,
le=1 \€Ek k=1
and
Yl =Y > laid = (suplil) . (sup|a |>
k=1 k=1 i€k k =1 \'€

When sup|Ey| = o, we have [;  d and the inclusion is strict. Since if E; = {1,2}
k

and E, = {minE,_; + n(n + 1),--,maxE, + n(n+ 1) }, (n=2,3,::+),
and if the sequence x = (x;) is chosen such that x; = for ke E,. It is

n(n+1) +1)
obvious that x € d while x & ;.
Corollary 3. Let sup|Ej| < o. Then, we have

k

(co(E))F = (c(E))F = ((EDF = L.
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Proof. Since d = [, by using Theorem 4, we obtain the desired result.

Corollary 4 [11]. We have c,f = cf = 1,,F = 1,.

Proof. If E;, = {k} for all k, by applying Corollary 3, we obtain the desired result.
Theorem 5. We have (X(E))® c d, where X € {l., ¢, cy}. Moreover if |E,| > 1
for an infinite number of n, then these inclusions are strict.

Proof. One can conclude from Theorem 4 with Part (ii) of Lemma 1 that

B
XEN* < (X(B)" =d,
where X € {l,,c,co}. Moreover, if the sequence a = (a;) is defined by a; =
1/2™1 whenever i € E,, then we have

o)

supla; ;
> (spt) = > 7
>

which means that a € d. Because |E,| > 1 for an infinite number of n, we may
choose an index subsequence (n;) of the positive integers with |En,-| > 1 forj =
1,2, Leta; = minE, , we define the sequence x = (x;) as follows:

n;j—1 ifi—=
2™ ifi=a
xp =4-=2mt ifi=aj+1
0 otherwise,

fori=1,2,---. Thus ZLEER x; =0 for all k,and x € X(E) But

;'akxkl Z > lax —Zz — o

j= llEEn
which shows that a & (X(E))* for X € {lo,c, cO}. Therefore, these inclusions
strictly hold. This step completes the proof.
Corollary 5. Let sup|Ey| < . We have (X(E))* c l;, where X € {ly,c, co}-
k

Moreover if |E,| > 1 for an infinite number of n, then these inclusions are strict.
Proof. Since d = [, by using Theorem 5, we obtain the desired result.

4. Matrix transformations on sequence spaces X (E)

In the present section, some classes of infinite matrices related with new
sequence spaces are characterized. Let A = (a,,) be an infinite matrix of real
numbers and X and Y be two sequence spaces. We write A,, = (a,)re, for the
sequence in the n-th row of A. It is clear that A € (X,Y) if and only if A,, € X? for
allnand Ax € Y forall x € X.

We start with the following lemma which is needed to prove our main results.
Lemma 2. If a = (a;) € d, then the linear functional f : ¢, (E) — R defined by
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(0.0)

FO =Y an =) € qE),
is bounded and =

[oe]

=) <is£5p|ai|).

n=1 n

Proof. Since f(x) = Yx-1 Yieg, :x;, the proof is obtained by the proof of

Theorem4.
Let A = (a,) be an infinite matrix. We consider the conditions

sup <Z 511p|ani|) <o, ®)
n i€EE

k=1

lim supa,; =0 (k=1,2,-), 9
Nn-=®4eg,

lim Z supa,; | =0, (10)
n-o =1 iEEL

lim sup a,; =1, forsomel, €R (k=1,2,-), (11)
Nn-=®4eg,

lim 2 supay; | =1 forsomel € R. (12)
n-o =1 iEEL

Theorem 6. We have

() (co(E), 1) = (c(E),lw) = (In(E), ly) and A € (I (E), ) if and only if the
condition (8) holds;

(ii) A € (co(E), cp) if and only if the conditions (8) and (9) hold;

(iii) A € (c(E), cp) if and only if the conditions (8), (9) and (10) hold;

(iv) A € (¢y(E), ¢) if and only if the conditions (8) and (11) hold;

(v) A € (c(E),c) if and only if the conditions (8), (11) and (12) hold.

Proof. (i) First we show that A € (I, (E),l,) if and only if the condition (8)
holds. By the condition (8), we have A, € d. So due to Theorem 4, A, €

(lo())” for n'=1,2,-. Let x € I,(E). Similar to the proof of Lemma 2, we

deduce that
|4, ()] < ( E Sup ap; )IIxIIE,
IEE

k=1
for all n. This implies that Ax € [, foreach x € [,(E), S0 A € (I (E), ls).
Conversely let A € (I(E), l,). We define the sequence x = (x;) by x; =

sgn a,;, where i € Ej, is the first index of Ej, such that |a,;| = sup|a,;|, and put
JEEK

the remaining elements zero. It is clear that x € [ (E), so Ax € l,, and the
condition (8) must hold.
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Now we show that A € (cy(E), L) if and only if the condition (8) holds. Like
the previous part it's clear that A € (cy(E),l,) if the condition (8) holds.
Conversely, suppose that A € (cy(E),l,). By our hypothesis that Ax € [,
whenever x € ¢y(E), it can be concluded that Y;_; sup|a,;| < o for all n;

LEE

Otherwise if Y3y <sup|anrl|> = oo, for some positive integer n’. There is a
lEEy
strictly increasing sequence (m;);Z, of positive integers such that

Mjt+1

<sup|anrl|> > j
k:mj+1 €Ek
We define the sequence x = (x;) by x; = =—='i, where i € E is the first

index of Ej such that |a,;| = supla,,|, m; < k < m;,,, and put the remaining

lEE)
elements zero, especially x, = 0for0 <k < my. Itisobvious that x € c,(E), and
Mj+1 o0
lsel‘ll;p ’an'l’
Sonen=y > L5
j=1k=m;+1 j=1

This means that Y;°_; a,,7,.xx is divergent, which contradicts our assumption.
Hence Y7, <sup|anrl|> < o and A4, € d, for all n. Due to Lemma 2, the linear
lEE}

functional f,;: co(E) — R defined by

fa®) = ) e (x = () € co(E)),
k=1
is bounded and [If,|l = X¥-1supla,,|, for all n. By applying the Banach-
lEE

Steinhaus theorem it follows that supl||f,|l < o, SO sup Yr=;la.x| < o and the

n n
condition (8) must hold. The proof is completed according to the mentioned topics
and (I (E), los) S (c(E), loo) S (€o(E), o).
(ii) Suppose that A € (co(E), cp). We define the sequence e* = (e )2, by eff =
1, where i € E} is the first index of Ej such that |a,;| = supla,;| for k =1,2,-,
l

EEy
and put the remaining elements zero. Obviously e* € c,(E) and Ae* € ¢, this

proves the necessity of the condition (9). The proof of the necessity of the
condition (8) is similar to previous part. Conversely, suppose that the conditions
(8) and (9) hold. For every x € cy(E)
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AnGOl = ZZamxl

=1Ii€Ey
m co
< E 'Slijplanil zxi + E Sl;plaml E X
€ 4 € h
k=1l k i€EEy k=m+l k i€EE)
m co
<

Il ) suplasl + sup | >l D suplan
= iEE kzm+1 ] i€E)

EEL k=m+1

Now take m so large that sup |Zle5k x;| < € and then take n so large that
k=m+

Yheq suplay,;| < € (possible since hm sup|a,;| = 0). We have Ax € c,.
iEEY n-o iEEY

(iii) Suppose that A € (c(E), cy). Since the sequences e* € c(E), we deduce that

Ae* € ¢, for k = 1,2,---. This implies that (sup|a;| )s=; € co, SO the condition
iEEL

(9) holds. Also if the sequence e = (e;) is defined by e; = 1 when a,,; = sup|a,;|
EEL
for some k, and we put the remaining elements zero. Then e € c(E) indicate that

Ae = (Z,‘le suplanl|> € ¢y, SO the condition (10) is satisfied. The proof of
lEEy n=1
the necessity of the condition (8) is similar to the part (i).
Conversely, suppose that the conditions (8), (9) and (10) hold. For every
x € c(E) there is a finite number as [ such that ;lim Yier, X = 0. If the sequence

= (y;) defined by yl =& ! - for i € Ey., then

Ap(x) = Z Ank Xk = Z Ank (X — Vi) + Z AnkYk = Sn Tty

k=1 k=1 k=1
where s, = Y1 @k (X — yi) and t, = Xp-; ank Yk By applying part (ii), we
deduce that A € (cy(E), cp). So lim s, = 0, since(x; — yi) € co(E). On the other
n—oo

hand, lim t,, = 0 by the condition (10), since
n—oco

Z D lanyil < lz suplay|

=1Ii€Eg
Therefore A € (c(E), cy).
(iv) Let A € (co(E),c). Using the sequences e¥, the necessity of the condition
(11) is immediate. The proof of the necessity of the condition (8) is similar to the
part (i). Conversely, suppose that the conditions (8) and (11) hold. If B = (by;)
be a matrix such that b,; = a,; — l, where i € E, for every n,k € N, we first
prove that B € (cy(E), cp). Let M > 0 and € > 0 be given. Due to (11), there is a
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positive number Nj such that |sup ay; — x| <, for all n>N,. Take N =
i€E)
max N, we have
1<ksM
m m m m
lekl < Z ly — sup ap;| + Z suplay;| <€+ ) suplayl,
=1 =1 IEE ] LEE =1 LEE)

for every n > N. If M — oo, due to the condition (8), it can be concluded that
(lx )r=1 € l;. Since sup by,; = sup a,; — lx, we have sup b,; = 0 as n - oo and

i€E i€E) I€ER
also sup Y.;°-; sup|by;| < . Hence B € (cy(E), cy), by part (ii). This implies that
n i€E})

Bx € ¢ forall x € ¢4(E), so

Al_I}go Ak Xk =Z Iy Z x; . (13)
k=1 k=1 i€EE}
Since (Nier, Xi )iz1 € co When x € co(E) and (I )i, € cf, by Corollary 4, we
have Y5, Ik (Zier, %i) < oo for all x € ¢o(E). This result and the relation (13)
show that B € (cy(E), ¢y). The proof of the part (v) is similar to the part (iii).
It should be noted when E; = {j} for j = 1, 2, ---, the conditions (8), (9),
(10), (11) and (12) can be rewritten as follows, respectively.

sup (ZI%M) < o, (14)

k=1
lima,, =0 (k=1,2,-), (15)
n—-oo
lim (Z ank) =0, (16)
lim a,, =1, forsomel, €R (k=1,2,-), @a7)
n—oo
lim <z ank) =1 forsomel € R. (18)
n—oo

k=1

Corollary 6 [11]. We have

() (co, L) = (¢, 1) = (I, loo) @nd A € (1o, L) if and only if the condition (14)
holds;

(ii) A € (cyp, co) if and only if the conditions (14) and (15) hold ;

(iii) A € (c, cp) if and only if the conditions (14), (15) and (16) hold;

(iv) A € (cp, c) if and only if the conditions (14) and (17) hold,;

(v) A € (c,c) if and only if the conditions (14), (17) and (18) hold.
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Bozi yeni geyri-miitlaq tip yarim normallasms ardicilhq fazalar: vo
matrix ¢evrilmolori

S. Erfanmanesh, D. Foroutannia
XULASO

Bu isin moagsadi ardicilliq fazalarimi daxil etmokdir. Biz bu fozalarin bozi topoloji
xassalori aragdiririq vo hamginin onlarin arasinda daxilolma miinasibotlori qururug. Bundan
dlavo, biz bu fozalarin a- vo B-duallarimi hesablayir vo sonsuz matrislorin siniflorini
xarakterizs edirik.

Acar sozlar: yarimnormallagmig ardicilliq fozalari, matris oblasti, a- vo B-duallar,
matris ¢evirmolor.

HexoTopbie HOBbIe HEaGCOJIBLIOTHOTO THIIA MOJTY-HOPMHPOBAHHBIE
NPOCTPAHCTBA MOC/Ie10BATEIbHOCTEl 1 MATPHYHBIE NPe00Pa30BaAHMSA

C. Epdanmanew, /I. ®opoyranHua
PE3IOME

Ilenp  maHHOTO  WCCIENOBAaHMSA  3aKJIIOYA€TCS B BBEACHMH  IPOCTPAHCTB
nocieaoBaTedbHOCTEH. MBI HCCIeTyeM HEKOTOpbIe TOMOJOTUYECKUE CBOWCTBA 3TUX
MPOCTPAHCTB, a TaKXKE YCTAHOBUTh HEKOTOPHIE OTHOIICHWH BKIIOUEHUU MEXIy HUMHU.
Kpome TOro, ™Mbl BBIUHCISAEM ©O- U O€Ta-JBOMNCTBEHHBIE JTHX HPOCTPAHCTB U
OXapakTepu3yeM KIacchl OECKOHEUHBIX MATPHII.

KiroueBble cjI0Ba: IOTy-HOPMHPOBAaHHBIE MPOCTPAHCTBA IOCIIEIOBATEIHHOCTEH,
MaTpUYHBIC JTOMEHEI, 0- U OeTa-CoNpsKEHHbBIS, MATPUYHBIC TPe0Opa30BaHMUs.
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